如图,已知AB是⊙O的直径,AC是弦,CD切⊙O于点C,交AB的延长线于点D,∠ACD=120°,BD=10.(1)求证:CA=CD;(2)求⊙O的半径.

问题描述:

如图,已知AB是⊙O的直径,AC是弦,CD切⊙O于点C,交AB的延长线于点D,∠ACD=120°,BD=10.

(1)求证:CA=CD;
(2)求⊙O的半径.

(1)证明:连接OC.∵DC切⊙O于点C,∴∠OCD=90°.又∵∠ACD=120°,∴∠ACO=∠ACD-∠OCD=120°-90°=30°.∵OC=OA,∴∠A=∠ACO=30°,∴∠COD=60°.∴∠D=30°,∴CA=DC.(2)∵sin∠D=OCOD=OCOB+BD=OBOB+BD...
答案解析:(1)可通过证明角相等来证边相等.连接OC,则OC⊥CD,那么∠ACO=30°;根据等边对等角我们不难得出∠A=30°,∠COD=60°,直角三角形OCD中,∠COD=60°,因此∠A=∠D=30°,由此便可得出CA=CD.
(2)在直角三角形OCD中,可用半径表示出OC,OD,有∠D的度数,可用正弦函数求出半径的长.
考试点:切线的性质.
知识点:本题主要考查了解直角三角形的应用和切线的性质.