证明 实对称矩阵是正定矩阵的充要条件是它的特征值都是正数

问题描述:

证明 实对称矩阵是正定矩阵的充要条件是它的特征值都是正数

1.高等代数上有个定理:对于任意一个n级实对称矩阵A都存在一个n级正交矩 阵T,使T'AT成对角型,而对角线上的元素就是它的特征根.由此,开证,(1)充分性:当对称矩阵A的特征根都为正数时,对角型矩阵T'AT对角线上的元素...