n阶实对称矩阵,它的特征值的重数之和肯定是n吧?但是怎么证明它的特征向量空间也是能达到n维的呢?

问题描述:

n阶实对称矩阵,它的特征值的重数之和肯定是n吧?但是怎么证明它的特征向量空间也是能达到n维的呢?

  一个特征值均为实数的矩阵一般不能对角化,不过上三角化还是可以的,特别地,存在正交矩阵Q,上三角矩阵R使得  AQ = QR(*)  R对角线上的元素是全体特征值,即Schur分解定理的特例(可以用数学归纳法对矩阵的阶数...