A,B为正定矩阵,证:AB的特征值全部大于零.

问题描述:

A,B为正定矩阵,证:AB的特征值全部大于零.

首先说一下,PT这里表示P矩阵的转置,P-1表示P矩阵的逆矩阵
这里利用 “ 实对称矩阵A为正定矩阵的充要条件为:存在可逆矩阵P,使得
A=PTP ” 来证明
已知A,B均正定,则存在可逆矩阵P,Q使得
A = PTP
B = QTQ
Q(AB)Q-1 = Q(PTP)(QTQ)Q-1=QPTPQT = (PQT)T(PQT)
P,Q均可逆,所以PQT也为可逆矩阵,
再次利用开始的充要条件,Q(AB)Q-1为正定矩阵,所有特征值大于零
又因为Q为可逆矩阵 所以 AB 与矩阵 Q(AB)Q-1 相似,所以AB特征值全大于零
OK,证明完毕,