设A为m*n实矩阵,E为n阶单位矩阵,已知B=λE+(A的转置乘以A).证明,当λ大于0时,B为正定矩阵.(要求分析B的特征值全大于零来证明,具体该怎么证明?)
问题描述:
设A为m*n实矩阵,E为n阶单位矩阵,已知B=λE+(A的转置乘以A).证明,当λ大于0时,B为正定矩阵.
(要求分析B的特征值全大于零来证明,具体该怎么证明?)
答
设A为m*n实矩阵,E为n阶单位矩阵,已知B=λE+(A的转置乘以A).证明,当λ大于0时,B为正定矩阵.
(要求分析B的特征值全大于零来证明,具体该怎么证明?)