线性代数,瑞利原理 如果B为正定矩阵,利用瑞利原理证明:矩阵A+B之最小特征值大于矩阵A的最小特征值

问题描述:

线性代数,瑞利原理 如果B为正定矩阵,利用瑞利原理证明:矩阵A+B之最小特征值大于矩阵A的最小特征值
如果B为正定矩阵,利用瑞利原理证明:矩阵A+B之最小特征值大于矩阵A的最小特征值
能否证明?注意是大于,

用λ表示特征值,λn表示最小特征值,则
λn(A+B)=min{x^T(A+B)x:||x||=1}
>=min{x^TAx:||x||=1}+min{x^TBx:||x||=1}
=λn(A)+λn(B).
注意到B正定,因此λn(B)>0,故有
λn(A+B)>=λn(A)