cos^4x-sin^4x 2sin^2x=
问题描述:
cos^4x-sin^4x 2sin^2x=
答
cos⁴x-sin⁴x+2sin²x
=(cos²x+sin²x)(cos²x-sin²x)+1-cos2x
=cos2x+1 -cos2x
=1
答
根据公式。前者等于cos8x,后者等于cos4x-1。教材上有结论的,也可以自己把它推出来。
答
cos^4x-sin^4x+2sin^2x
=(cos^2x+sin^2x)(coa^2x-sin^2x)+2sin^2x
=coa^2x-sin^2x+2sin^2x
=cos^2x+sin^2x
=1