如图,正方形OABC的面积为9,点O为坐标原点,点B在函数y=kx(k>0,x>0)的图象上,点P(m、n)是函数y=kx(k>0,x>0)的图象上任意一点,过点P分别作x轴、y轴的垂线,垂足分别为E、F,并设矩形OEPF和正方形OABC不重合部分的面积为S.(1)求B点坐标和k的值;(2)当S=92时,求点P的坐标.
问题描述:
如图,正方形OABC的面积为9,点O为坐标原点,点B在函数y=
(k>0,x>0)的图象上,点P(m、n)是函数y=k x
(k>0,x>0)的图象上任意一点,过点P分别作x轴、y轴的垂线,垂足分别为E、F,并设矩形OEPF和正方形OABC不重合部分的面积为S.k x
(1)求B点坐标和k的值;
(2)当S=
时,求点P的坐标. 9 2
答
知识点:本题主要考查了反比例函数的系数与矩形的面积的关系,把线段的长的问题转化为点的坐标问题是解决本题的关键,需要注意分点P在点B的左边与右边两种情况进行讨论求解,避免漏解而导致出错.
(1)∵正方形OABC的面积为9,∴OA=OC=AB=BC=3,∴B(3,3),又∵点B(3,3)在函数y=kx(k>0,x>0)的图象上,∴将B的坐标代入反比例函数解析式得:k3=3,即k=9;(2)分两种情况:①当点P在点B的左侧时,矩形OE...
答案解析:(1)由正方形的面积,利用正方形的面积公式求出正方形的边长,确定出OA及AB的长,得到点B的坐标,将B的坐标代入反比例函数解析式中即可求出k值;
(2)分两种情况考虑:①当点P在点B的左边时,不重合部分为矩形PMCF,将P的坐标代入第一问确定出的反比例函数解析式中,得到mn的值,根据P及B的坐标,表示出PM与CM,利用矩形的面积公式表示出矩形PMCF的面积,将mn的值及已知的面积代入,即可求出m的值,进而得到n的值,确定出此时P的坐标;②当点P在点B的右边时,不重合部分为矩形ANPE,由P及B的坐标表示出AE及PE,利用矩形的面积公式表示出矩形ANPE的面积,将mn的值及已知的面积代入求出n的值,进而求出m的值,确定出此时P的坐标,综上,得到所有满足题意的P的坐标.
考试点:反比例函数综合题.
知识点:本题主要考查了反比例函数的系数与矩形的面积的关系,把线段的长的问题转化为点的坐标问题是解决本题的关键,需要注意分点P在点B的左边与右边两种情况进行讨论求解,避免漏解而导致出错.