已知数列﹛an﹜中,a1=½,Sn为数列的前n项和,且Sn与1/an的一个等比中项为n,则Sn(n趋于∞)的极限是

问题描述:

已知数列﹛an﹜中,a1=½,Sn为数列的前n项和,且Sn与1/an的一个等比中项为n,则Sn(n趋于∞)的极限是

Sn=an*n^2
S(n+1)=a(n+1)*(n+1)^2
a(n+1)= a(n+1)*(n+1)^2- an*n^2
an*n^2= a(n+1)*(n^2+2n)
a(n+1)=n/(n+2)an=n/(n+2)*(n-1)/(n+1)*(n-2)/n*…*1/3*a1
=n!/(n+2)!*2*1/2=n!/(n+2)!=1/(n+2)(n+1)
对n=0成立a1=1/2
于是an=1/n(n+1),n=1,2…
则Sn=n^2/n(n+1)
于是Sn->1,n->∞