已知:如图,⊙O1与⊙O2相交于A、B两点,O1在⊙O2上,⊙O2的弦BC切⊙O1于B,延长BO1、CA交于点P、PB与⊙O1交于点D.(1)求证:AC是⊙O1的切线;(2)连接AD、O1C,求证:AD∥O1C;(3)如果PD=1,⊙O1的半径为2,求BC的长.
问题描述:
已知:如图,⊙O1与⊙O2相交于A、B两点,O1在⊙O2上,⊙O2的弦BC切⊙O1于B,延长BO1、CA交于点P、PB与⊙O1交于点D.
(1)求证:AC是⊙O1的切线;
(2)连接AD、O1C,求证:AD∥O1C;
(3)如果PD=1,⊙O1的半径为2,求BC的长.
答
(1)证明:连接O1A;∵BC是⊙O1的切线,∴∠O1BC=90°.∵∠O1AP是圆O2的内接四边形的外角,∴∠PAO1=∠O1BC=90°,∴Q1A⊥AC,则AC是⊙O1的切线.(2)证明:连接AB,∵PC切⊙O1于点A,∴∠PAD=∠ABD.∵∠ACO1=∠...
答案解析:(1)证AC是圆O1的切线,可连接O1A然后证O1A⊥PC即可,可通过∠PAO1是圆O2的内接四边形的外角来求解.
(2)证AD∥O1C,就是证∠PAD=∠O1CA,可通过与两角相等的中间角来求解;连接BA,那么∠O1BA就是与两角相等的中间角.(主要应用弦切角和圆周角定理来求解).
(3)由于BC,AC同与圆O1相切,因此根据切线长定理AC=BC,那么求BC也就是求AC的长,有了PD和⊙O1的半径即O1D,O1B的值,那么可根据切割线定理求出PA,由(2)得出的平行线,根据平行线分线段成比例定理,可得出关于PA,PC,PD,PO的比例关系,而PD,DQ1,PA的值都已知,因此可求出AC的长,也就求出了BC的长.
考试点:切线的判定;切割线定理.
知识点:本题主要考查了切线的判定,切线长和切割线定理,圆周角定理等知识点.要证某线是圆的切线,已知此线过圆上某点,连接圆心和这点(即为半径),再证垂直即可.