请说明:若x^2+y^2+z^2=xy-yz-xz,且xyz不等于0,则x=y= -z

问题描述:

请说明:若x^2+y^2+z^2=xy-yz-xz,且xyz不等于0,则x=y= -z

x^2+y^2+z^2=xy-yz-xz
x^2+x^2+y^2+y^2+z^2+z^2=2xy-2yz-2xz
(x^2-2xy+y^2)+(y^2+2yz+z^2)+(x^2+2xz+z^2)=0
(x-y)^2+(^y+z)^2+(x+z)^2=0
又因为xyz不等于0
所以x=y= -z

方程两边同乘2,移项
2x^2+2y^2+2z^2-2xy+2yz+2xz=0
(x^2-2xy+y^2)+(x^2+2xz+z^2)+(y^2+2yz+z^2)=0
(x-y)^2+(x+z)^2+(y+z)^2=0
三个平方之和为0 ,则都 为0,
x-y=0
x+z=0
y+z=0

两边同乘以2并移项得
2x^2+2y^2+2z^2-2xy+2yz+2xz=0
整理得
(x^2-2xy+y^2)+(x^2+2xz+z^2)+(y^2+2yz+z^2)=0
(x-y)^2+(x+z)^2+(y+z)^2=0
得:x-y=0,x+z=0,y+z=0
整理得:x=y=-z
则原命题得证