设f(x)在点x=0的某一邻域内具有二阶连续导数,且limx→0f(x)x=0,证明级数∞n=1f(1n)绝对收敛.
问题描述:
设f(x)在点x=0的某一邻域内具有二阶连续导数,且
lim x→0
=0,证明级数f(x) x
f(∞ n=1
)绝对收敛. 1 n
答
∵f(x)在点x=0的某一邻域内具有二阶连续导数,即f(x),f'(x),f''(x)在x=0的某一邻域均连续
且:
lim x→0
=0f(x) x
∴f(x)=f(0)=0
lim x→0
=0 f(x)−f(0) x
∴f’(0)=0
∴
lim x→0
=f(x) x2
lim x→0
=f’(x) 2x
lim x→0
=f’(x)−f’(0) 2x
f’’(0) 1 2
∴
|lim n→∞
|是一常数f(
)1 n (
)2
1 n
∴由比值判别法可知原级数绝对收敛
答案解析:考查抽象级数收敛条件的判断
考试点:绝对收敛与条件收敛;级数收敛的必要条件.
知识点:判断是否绝对收敛,一般取绝对值,然后和一个已知是否收敛的级数作比值,根据极限值做出判断