高等数学下册多元函数微分学及其应用中隐函数存在定理1怎样证明?求导公式:dy/dx=-Fx/Fy,隐函数存在定理1:设函数F(x,y)在点P(x.,y.)的某一邻域内具有连续偏导数,且FX(x.,y.)=0,FY(x.,y.)不等于0,则方程F=(x,y)=0在点(x.,y.)的某一邻域内恒能唯一确定一个连续且具有连续导数的函数y=f(x),它满足条件y.=f(x.),并有dy/dx=-Fx/Fy

问题描述:

高等数学下册多元函数微分学及其应用中隐函数存在定理1怎样证明?求导公式:dy/dx=-Fx/Fy,
隐函数存在定理1:设函数F(x,y)在点P(x.,y.)的某一邻域内具有连续偏导数,且FX(x.,y.)=0,FY(x.,y.)不等于0,则方程F=(x,y)=0在点(x.,y.)的某一邻域内恒能唯一确定一个连续且具有连续导数的函数y=f(x),它满足条件y.=f(x.),并有dy/dx=-Fx/Fy