设变量x,y满足约束条件:x+y≥3x-y≥-12x-y≤3.则目标函数z=2x+3y的最小值为( )A. 6B. 7C. 8D. 23
问题描述:
设变量x,y满足约束条件:
.则目标函数z=2x+3y的最小值为( )
x+y≥3 x-y≥-1 2x-y≤3
A. 6
B. 7
C. 8
D. 23
答
知识点:本题给出二元一次不等式组,求目标函数z=2x+3y的最小值,着重考查了二元一次不等式组表示的平面区域和简单的线性规划等知识,属于基础题.
作出不等式组
表示的平面区域,
x+y≥3 x-y≥-1 2x-y≤3
得到如图的△ABC及其内部,其中A(2,1),B(1,2),C(4,5)
设z=F(x,y)=2x+3y,将直线l:z=2x+3y进行平移,
当l经过点A时,目标函数z达到最小值
∴z最小值=F(2,1)=7
故选:B
答案解析:作出题中不等式组表示的平面区域,得如图的△ABC及其内部,再将目标函数z=2x+3y对应的直线进行平移,可得当x=2,y=1时,z=2x+3y取得最小值为7.
考试点:简单线性规划.
知识点:本题给出二元一次不等式组,求目标函数z=2x+3y的最小值,着重考查了二元一次不等式组表示的平面区域和简单的线性规划等知识,属于基础题.