已知抛物线C:y=-12x2+6,点P(2,4)、A、B在抛物线上,且直线PA、PB的倾斜角互补.(1)证明:直线AB的斜率为定值.(2)当直线AB在y轴上的截距为正数时,求△PAB面积的最大值及此时直线AB的方程.

问题描述:

已知抛物线C:y=-

1
2
x2+6,点P(2,4)、A、B在抛物线上,且直线PA、PB的倾斜角互补.
(1)证明:直线AB的斜率为定值.(2)当直线AB在y轴上的截距为正数时,求△PAB面积的最大值及此时直线AB的方程.

(Ⅰ)证:易知点P在抛物线C上,设PA的斜率为k,则直线PA的方程是y-4=k(x-2).代入y=-12x2+6并整理得x2+2kx-4(k+1)=0此时方程应有根xA及2,由韦达定理得:2xA=-4(k+1),∴xA=-2(k+1).∴yA=k(xA-2)+4=-k2-...
答案解析:(1)设出A、B坐标,利用一元二次方程根与系数的关系,求出A、B横坐标之差,纵坐标之差,从而求出AB斜率.
(2)设出AB直线方程,与抛物线方程联立,运用根与系数的关系求AB长度,计算P到AB的距离,计算△PAB面积,
使用基本不等式求最大值.
考试点:直线与圆锥曲线的综合问题.
知识点:本小题主要考查直线、抛物线等基本知识,考查运用解析几何的方法分析问题和解决问题的能力.