O为三角形ABC所在平面内一点,向量OA^2 +向量BC^2=向量OB^2+向量CA^2=向量OC^2+向量AB^2,则O为什么心
问题描述:
O为三角形ABC所在平面内一点,向量OA^2 +向量BC^2=向量OB^2+向量CA^2=向量OC^2+向量AB^2,则O为什么心
答
O为三角形ABC所在平面内一点,向量OA^2 +向量BC^2=向量OB^2+向量CA^2=向量OC^2+向量AB^2,则O为什么心