在平面直角坐标系XOY中已知圆C1:(X+3)^2+(Y-1)^2=4和圆C2:(X-4)^2+(Y-5)^2=4设P为平面上的点,满足:存在过点P的无穷多对互相垂直的直线L1和L2,他们分别于圆C1和圆C2相交,且直线L1被圆C1截得的弦长与直线L2被圆C2截得的弦长相等,试求所以满足条件的点P的坐标.

问题描述:

在平面直角坐标系XOY中已知圆C1:(X+3)^2+(Y-1)^2=4和圆C2:(X-4)^2+(Y-5)^2=4
设P为平面上的点,满足:存在过点P的无穷多对互相垂直的直线L1和L2,他们分别于圆C1和圆C2相交,且直线L1被圆C1截得的弦长与直线L2被圆C2截得的弦长相等,试求所以满足条件的点P的坐标.

设点P坐标为(m,n),直线l1、l2的方程分别为:y-n=k(x-m),y-n=-1/k(x-m)即kx-y+n-km=0,-x/k-y+n+m/k=0因为直线l1被圆C1截得的弦长与直线l2被圆C2截得的弦长相等,两圆半径相等由垂径定理,得:圆心C1到直线l1与C2直线l2...