已知圆C1(x+1)^2+y^2=1和圆C2(x-1)^2+y^2=9,求与圆C1外切而内切于圆C2的动圆圆心P的轨迹方程
问题描述:
已知圆C1(x+1)^2+y^2=1和圆C2(x-1)^2+y^2=9,求与圆C1外切而内切于圆C2的动圆圆心P的轨迹方程
答
C1圆心:C1(-1,0),半径1
C2圆心:C2(1,0),半径3
设P点:(x,y),动圆半径为r
则PC1长=C1半径+r
PC2长=C2半径-r
即:
(x+1)²+y²=(1+r)² (1)
(x-1)²+y²=(3-r)² (2)
由(1)得:r1=-1+√(x²+2x+y²+1)
r2=-1-√(x²+2x+y²+1)
因r2