已知数列{an}满足a1=0,a2=2,且对任意m、n∈N*都有a2m-1+a2n-1=2am+n-1+2(m-n)2(1)求a3,a5;(2)设bn=a2n+1-a2n-1(n∈N*),证明:{bn}是等差数列;(3)设cn=(an+1-an)qn-1(q≠0,n∈N*),求数列{cn}的前n项和Sn.

问题描述:

已知数列{an}满足a1=0,a2=2,且对任意m、n∈N*都有a2m-1+a2n-1=2am+n-1+2(m-n)2
(1)求a3,a5
(2)设bn=a2n+1-a2n-1(n∈N*),证明:{bn}是等差数列;
(3)设cn=(an+1-an)qn-1(q≠0,n∈N*),求数列{cn}的前n项和Sn

(1)由题意,令m=2,n=1,可得a3=2a2-a1+2=6
再令m=3,n=1,可得a5=2a3-a1+8=20
(2)当n∈N*时,由已知(以n+2代替m)可得
a2n+3+a2n-1=2a2n+1+8
于是[a2(n+1)+1-a2(n+1)-1]-(a2n+1-a2n-1)=8
即bn+1-bn=8
所以{bn}是公差为8的等差数列
(3)由(1)(2)解答可知{bn}是首项为b1=a3-a1=6,公差为8的等差数列
则bn=8n-2,即a2n+1-a2n-1=8n-2
另由已知(令m=1)可得
an=

a2n−1+a1
2
-(n-1)2
那么an+1-an=
a2n+1a2n−1
2
-2n+1=
8n−2
2
-2n+1=2n
于是cn=2nqn-1
当q=1时,Sn=2+4+6++2n=n(n+1)
当q≠1时,Sn=2•q0+4•q1+6•q2+…+2n•qn-1
两边同乘以q,可得
qSn=2•q1+4•q2+6•q3+…+2n•qn
上述两式相减得
(1-q)Sn=2(1+q+q2+…+qn-1)-2nqn
=2•
1−qn
1−q
-2nqn
=2•
1−(n+1)qn+nqn+1
1−q

所以Sn=2•
nqn+1−(n+1)qn+1
(q−1)2

综上所述,Sn=
n(n+1)     (q=1)
2•
nqn+1−(n+1)qn+1
(q−1)2
     (q≠1)

答案解析:(1)欲求a3,a5只需令m=2,n=1赋值即可.
(2)以n+2代替m,然后利用配凑得到bn+1-bn,和等差数列的定义即可证明.
(3)由(1)(2)两问的结果可以求得cn,利用乘公比错位相减求{cn}的前n项和Sn
考试点:数列递推式;数列的求和.
知识点:本小题是中档题,主要考查数列的基础知识和化归、分类整合等数学思想,以及推理论证、分析与解决问题的能力.同时考查了等差,等比数列的定义,通项公式,和数列求和的方法.