由3个不同的非零数字组成的所有三位数的和是1332,其中最大的三位数是多少?一共有多少个三位数?

问题描述:

由3个不同的非零数字组成的所有三位数的和是1332,其中最大的三位数是多少?
一共有多少个三位数?

这三个数字为1,2,3
组成的所有三位数为123,213,321,231,132,312
他们相加为1332,
所有其中最大的三位数为321

设这三个数为A,B,C,则A,B,C属于1,2,..9之间自然数
三个不同的数字{都不为0}组成的所有三位数,共有3X2=6个三位数
在所有27个三位数中,其中A,B,C分别为千位,百位,个位,各2次
所以三位数的和是 2*100*(A+B+C)+2*10*(A+B+C)+(A+B+C)=1332
所以A+B+C=6
又A,B,C属于1,2,..9之间自然数,不为0,且不同
所以A,B,C只能是3,2,1
所以最大数是321

首先要确定这3个数不能重复使用
设这3个数为X、Y、Z.共可组成6个三位数,每个数字在百位、十位、个位用了2次,方程可得
222(X+Y+Z)=1332
X+Y+Z=6,这三个数不相等,所以为1,2,3
所以最大的三位数为321