若数列{an}为等比数列,且a1a2=-32/3,a2a3=-24,则a4=?

问题描述:

若数列{an}为等比数列,且a1a2=-32/3,a2a3=-24,则a4=?

设公比为k,则k^2=(a2a3)/(a1a2)=9/4,因此k=3/2或 -3/2
a2=a1×k
所以a1a2=(a1)^2 ×k= -32/3,因为(a1)^2>0,所以k= -3/2
所以(a1)^2=64/9,a1=8/3或 -8/3
a4=a1× k^3
当a1=8/3,a4= -9

设公比为k,则k^2=(a2a3)/(a1a2)=9/4,因此k=3/2或 -3/2a2=a1×k所以a1a2=(a1)^2 ×k= -32/3,因为(a1)^2>0,所以k= -3/2所以(a1)^2=64/9,a1=8/3或 -8/3a4=a1× k^3当a1=8/3,a4= -9当a1= -8/3,a4= 9...