已知数列an中,a1=1,前项n和sn与通项an满足an=2sn2/2sn-1,求通项的an表达式

问题描述:

已知数列an中,a1=1,前项n和sn与通项an满足an=2sn2/2sn-1,求通项的an表达式

an=2Sn^2/2Sn-1,
又an=Sn-S(n-1),
所以Sn-S(n-1) =2Sn^2/2Sn-1,
(2Sn-1)(Sn-S(n-1)) =2Sn^2,
2Sn^2-2 Sn S(n-1)- Sn+ S(n-1) =2Sn^2,
-2 Sn S(n-1)- Sn+ S(n-1) =0,
- Sn+ S(n-1)= 2 Sn S(n-1),
两边同除以Sn S(n-1)可得:1/ Sn -1/ S(n-1)=2,
所以数列{1/ Sn }是等差数列,首项为1,公差为2,
1/ Sn=1+2(n-1)=2n-1,
Sn=1/(2n-1)
∴n=1时,a1=1,
n≥2时,an= Sn- S(n-1)= 1/(2n-1)- 1/(2n-3)=-2/[(2n-1) (2n-3)].