关于x的方程mx2+2(m+3)x+2m+14=0有两个实数根,且一根大于4,一根小于4,求实数m的取值范围.

问题描述:

关于x的方程mx2+2(m+3)x+2m+14=0有两个实数根,且一根大于4,一根小于4,求实数m的取值范围.

构造函数f(x)=mx2+2(m+3)x+2m+14
∵一根大于4,一根小于4,
∴mf(4)<0
∴m(26m+38)<0

19
13
<m<0.
答案解析:构造函数f(x)=mx2+2(m+3)x+2m+14,利用一根大于4,一根小于4,根据二次函数的性质建立不等式,解不等式即可求实数m的取值范围.
考试点:一元二次方程的根的分布与系数的关系.

知识点:本题考查方程根的研究,考查函数与方程思想,解题的关键是建立函数,用函数思想解决方程问题.