已知函数f(x)满足f(logax)=a(x-1/x)/(a^2-1)(a>0,a≠1)已知函数f(x)满足f(logaX)=a(x-1/x)/(a^2-1)(a>0,a≠1)(1)对于函数f(x),当x∈(-1,1)时,f(1-m)+f(1-m^2)(2)当x∈(-∞,2)时,f(x)-4的值恒为负数,求实数a的取值范围
已知函数f(x)满足f(logax)=a(x-1/x)/(a^2-1)(a>0,a≠1)
已知函数f(x)满足f(logaX)=a(x-1/x)/(a^2-1)(a>0,a≠1)
(1)对于函数f(x),当x∈(-1,1)时,f(1-m)+f(1-m^2)(2)当x∈(-∞,2)时,f(x)-4的值恒为负数,求实数a的取值范围
您是不是漏掉了几个问什么的.要不然,这道题,一般人都不知道往哪方面去想.
(1).令logaX=t,x>0,所以t∈R.则x=a^t,带入得f(t)=a*(a^t-a^-t)/(a^2-1),将t换成x,得到表达式f(x)=a*(a^x-a^-x)/(a^2-1),x∈R.
然后考察它的奇偶性,单调性.
令x=-x,带入得f(-x)=a*(a^-x-a^x)/(a^2-1),它恰好等于-f(x).所以是奇函数.
然后看单调性.求导,f`(x)=a/(a^2-1)*(a^x*㏑a+a^-x*lna)=a/(a^2-1)*lna*(a^x+a^-x),讨论当0<a<1,导数大于0,a>1,还是大于0.所以函数是增函数.然后再来解第一问.
去掉f的办法是移向,利用奇偶性,单调性去掉符号.
首先注意定义域,这里是(-1,1),所以得有-1<1-m<1,且-1<1-m^<1.
然后移向,f(1-m)<-f(1-m^2)=f(m^2-1).又因为是增函数,所以1-m<m^2-1.解这三个关于m的范围,取交集,(如果没解错的话,应该是)0<m<1.
(2).f(x)-4<0,在区间(-∞,2)上恒成立,即f(x)<4恒成立.即f(x)的最大值小于4即可.f(x)增函数,令x=2带入方程,得a*(a^2-a^-2)/(a^2-1)<4.(注意,其实这里的x=2是取不到的,但可以用到不等式中,只要注意这个边界值是否可以取到即可.若可以取到,则有时候会写成≤某个值的情况.要注意)解这个不等式……a^2-a^-2,通分,得(a^4-1)/a^2=(a^2-1)*(a^2+1)/a^2,与下面的式子约掉一个(a^2-1),最后整理得a^2-4a+1