Y=tan(wX+π/4)向右平移π/6 与函数Y=tan(wX+π/6)重合 则w最小值Y=tan(wX+π/4)向右平移π/6 与函数Y =tan(wX+π/6)重合 则w最小值

问题描述:

Y=tan(wX+π/4)向右平移π/6 与函数Y=tan(wX+π/6)重合 则w最小值
Y=tan(wX+π/4)向右平移π/6 与函数Y =tan(wX+π/6)重合 则w最小值

y=tan(ωx+π/4)向右平移π/6得y=tan[ω(x-π/6)+π/4],与函数y=tan(ωx+π/6)重合
ω(x-π/6)+π/4=ωx+π/6-kπ
ω=6k+1/2
假设ω>0
ω最小值为1/2