求函数y=(2cos^2x+1)(2sin^2x+1)的值域

问题描述:

求函数y=(2cos^2x+1)(2sin^2x+1)的值域

y=(2cos^2x+1)(2sin^2x+1)=(2+cos2x)(2-cos2x)=4-cos2xcos2x=4-(1+cos4x)/2
[3,4]

令t=2sin^2 x+1,则有:1=(cosx)^2=1-(sinx)^2=1-(t-1)/2=(3-t)/2
y=(3-t+1)/t=(4-t)/t=4/t-1
ymin=y(3)=4/3-1=1/3
ymax=y(1)=4/1-1=3
值域为:[1/3,3]

y=(2cos^2x+1)(2sin^2x+1)
=4sin²xcos²x+2sin²x+2cos²x+1
=(2sinxcosx)²+3
=sin²(2x)+3
又sin2x∈[-1,1]
则sin²(2x)∈[0,1]
sin²(2x)+3∈[3,4]
值域=[3,4]