求曲线y=cosx,与直线y=2,x=π/2及y轴所围成的平面图形面积

问题描述:

求曲线y=cosx,与直线y=2,x=π/2及y轴所围成的平面图形面积

解:∫[0,π/2] (2-cosx)dx
=(2x-sinx)[0,π/2]
=(2*π/2-sinπ/2)-0
=π-1

平面图形面积用定积分,∫2-cosx dx = 2x - sinx + C
所以面积=π-1-(0-0)=π-1
旋转体体积V=π∫上0.5π,下0(f(x)^2)dx
体积=π(∫4dx - ∫cos^2xdx)=π((7 x)/2 - 1/4 Sin[2 x]) = 17.2718

用定积分
∫[0,π/2] (2-cosx)dx
=(2x-sinx)[0,π/2]
=π-1