在△ABC中,内角A,B,C的对边分别是a,b,c,已知b方=ac,且cosB=3分之5,求tanA+tanC
问题描述:
在△ABC中,内角A,B,C的对边分别是a,b,c,已知b方=ac,且cosB=3分之5,求tanA+tanC
答
cosB=3分之5
可能么?
答
∵ cosB=3/5,sin^2B+ cos2^B=1∴sin^2B=1- cos^2B,
sin^2B =1-(3/5)^2 =16/25,sinB=√(1- cos^2B)=√1-(3/5)^2=4/5,(其中√是根号、^2是平方)
∵0°<B<180°∴sinB>0,
又∵正弦定理a/sinA=b/sinB=c/sinC=2R得a=2RsinA,b=2RsinB,c=2RsinC;
分别代入b^2=ac 得 sin^2B= sinA× sinC;
cosB= cos((180-(A+C)) A+B+C=180°,B=180°-(A+C);三角形内角和.
=- cos(A+C)
=-(cosA cosC- sinA sinC)
= sinA sinC- cosA cosC,
整理得
cosA cosC= sinA sinC- cosB
= sin^2B- cosB
=16/25-3/5
=1/25.
tanA+tanC= sinA/cosA+sinC/cosC
= (sinA cosC+ cosA sinC)/cosA cosC
= sin(A+C)/ cosA cosC
= sinB/ cosA cosC
=(4/5)/(1/25)
=20.
※(cosB=3分之5)是不可能,我改为(cosB=5分之3)来回答了,高考在后,答题马虎不得!不知你满意否,但愿对你有所帮助.吉林 汪清