已知向量AB=(2,2,1),向量AC=(4,5,3),则平面ABC的单位法向量是

问题描述:

已知向量AB=(2,2,1),向量AC=(4,5,3),则平面ABC的单位法向量是

设所求的法向量为:n=(x,y,z);
则n⊥AB; n⊥BC
有:2x+2y+z=0; 4x+5y+3z=0;
消去x得:y=-z; 代入得:x=z/2;
又因为向量n是单位向量;所以:x^2+y^2+z^2=1;
即:z^2/4+z^2+z^2=1; z=2/3或z=-2/3;
所以平面ABC的单位法向量n=(1/3,-2/3,2/3); 或n=(-1/3,2/3,-2/3).