已知函数πf(x)=2cosxcos(x-π/6)-√3(sinx)^2+sinxcosx,(1).求f(x)的最小正周期(2)当a∈[0,π]时,若f (a)=1,求a的值
问题描述:
已知函数πf(x)=2cosxcos(x-π/6)-√3(sinx)^2+sinxcosx,
(1).求f(x)的最小正周期
(2)当a∈[0,π]时,若f (a)=1,求a的值
答
f(x)=2cosx(cosx*√3/2+sinx*1/2)-√3(sinx)^2+sinxcosx
=√3(cosx)^2+sinxcosx-√3(sinx)^2+sinxcosx
=√3[(cosx)^2-(sinx)^2]+2sinxcosx
=sin2x+√3cos2x
=√[1^2+(√3)^2]sin(2x+z)
=2sin(2x+z),其中tanz=√3=tanπ/3
所以f(x)=2sin(2x+π/6)
所以T=2π/2=π
f(a)=2sin(2a+π/6)=1
sin(2a+π/6)=1/2
所以2a+π/6=2kπ+π/6或2kπ+5π/6
a=kπ或kπ+π/3
0所以a=0,a=π,a=π/3