已知点P是椭圆x^2/100+y^2/64上一点,F1,F2是椭圆的焦点,若∠F1PF2=30°,则△F1PF2的面积为?

问题描述:

已知点P是椭圆x^2/100+y^2/64上一点,F1,F2是椭圆的焦点,若∠F1PF2=30°,则△F1PF2的面积为?

S=b^2*tan(∠F1PF2/2)=64tan15=64(2-√3)

设:PF1=M,PF2=N,由定义得:M+N=2a, (M+N)²=4a²
F1F2²=4c²=4a²-4b²
又F1F2²=M²+N²-2MNcosθ(余弦定理)
=(M+N)²-2MN-2MNcosθ
即4a²-4b²=4a²-2MN-2MNcosθ
所以MN=2b²/(1+cosθ)
所以SΔF1F2P=MNsinθ/2=b²sinθ/(1+cosθ)=8²sin30º/(1+cos30º)
=32/(1+√3/2)=64/(2+√3)=64(2-√3)

相当于
F1P+F2P=2a=20
F1F2=2c=12
∠F1PF2=30°
的三角形.
先用余弦定理
求出F1P*F2P
再算面积