一元二次方程ax^2+bx+c=0(a不等于0)的两个实根为x1,x2.求(1)(x1-x2)的绝对值 (2)x1^3+x2^3请不要在网上复制。

问题描述:

一元二次方程ax^2+bx+c=0(a不等于0)的两个实根为x1,x2.求(1)(x1-x2)的绝对值 (2)x1^3+x2^3
请不要在网上复制。

ax^2+bx+c=0(a不等于0)
x1x2=c/a
x1+x2=-b/a
(1)(x1-x2)的绝对值
=√(x1-x2)²=√[(x1+x2)²-4x1x2]=[√(b²-4ac)]/|a|
(2)x1^3+x2^3
=(x1+x2)³-3x1x2(x1+x2)
=-b³/a³-3c/a* (-b/a)
=-b³/a³+3bc/a²

用韦达定理
x1+x2=-b/a
x1*x2=c/a
所以
(1)
(x1-x2)²= (x1+x2)²-4x1x2=(b²-4ac)/a²
所以(x1-x2)的绝对值=√(b²-4ac)/|a|
(2)
x1^3+x2^3=(x1+x2)(x1^2-x1x2+x2^2)
=(x1+x2)[(x1+x2)^2-3x1x2]
=(-b³+abc)/a³

(1)
|x1-x2|=根号下|x1-x2|^2=根号下(x1+x2)^2-4x1x2
x1+x2=-b x1x2=c
所以|x1-x2|=根号下| (x1+x2)^2-4x1x2|=根号下|b^2/a^2-4c/a|=根号下|b^2-4ac|/|a|
(2)
x1^3+x2^3=(x1+x2)(x1^2-x1x2+x2^2)
=(x1+x2)(x1^2-x1x2+x2^2+2x1x2-2x1x2)
=(x1+x2)((x1+x2)^2-3x1x2)
=-b/a((-b/a^2-3c/a)
=(abc-b^3)/a^3

(x1-x2)²
=(x1+x2)²-4x1x2
所以|x1-x2|=√(b²/a²-4c/a)
x1²+x2²=(x1+x2)²-2x1x2
所以原式=(x1+x2)(x1²-x1x2+x2²)
=-b/a*(b²/a²-3c/a)
=-b(b²-3ac)/a³

1)原式=√[(x1-x2)²]
=√[(x1+x2)²-4x1x2]
因为x1+x2=-b/a,x1x2=c/a
所以原式=√(b²/a²-4c/a)
2)原式=(x1+x2)³-3x1x2(x1+x2)
因为x1+x2=-b/a,x1x2=c/a
所以原式=-b³/a³+3bc/a²