已知向量OP=(cosx,sinx),OQ=(-√3/3sinx,sinx),定义函数f(x)=OP*OQ1,求f(x)的最小正周期和最大值及相应的x值2,当OP垂直于OQ时,求x 的值
问题描述:
已知向量OP=(cosx,sinx),OQ=(-√3/3sinx,sinx),定义函数f(x)=OP*OQ
1,求f(x)的最小正周期和最大值及相应的x值
2,当OP垂直于OQ时,求x 的值
答
据题意,f(x)=向量OP*向量OQ=(cosx,sinx)(-√3/3sinx,sinx)=-√3/3sinxcosx+sin²x=-√3sin2x/6+(1-cos2x)/2----利用二倍角公式=-√3sin2x/6-cos2x/2+1/2=-(√3/3)sin(2x+∏/3)+1/2
所以:
最小正周期=2∏/2=∏;最大值为√3/3+1/2,此时2x+∏/3=-∏/2+2k∏,x=-5∏/12+k∏,k为整数
答
(1)f(x)=OP·OQ
=(cosx,sinx)·(-√3/3sinx,sinx)
=-√3/3sinx·cosx+sin²x
=(-√3sin2x/6)+[(1-cos2x)/2
=(-√3sin2x/6)-(cos2x/2)+1/2
=-(√3/3)sin(2x+π/3)+1/2
最小正周期T=2π/2=π;
最大值为√3/3+1/2,此时2x+π/3=-π/2+2kπ,x=-5π/12+kπ(k∈Z)
(2)∵OP垂直于OQ
∴OP·OQ=0,即f(x)=-(√3/3)sin(2x+π/3)+1/2=0,
即sin(2x+π/3)=√3/2
∴2x+π/3=(π/3)+2kπ 或2x+π/3=(2π/3)+2kπ (k∈Z)
解得:x=kπ 或x=(π/6)+kπ (k∈Z)