已知数列1/2,1/6,1/12,..,1/n(n+1),...,计算S1,S2,S3,由此推测计算Sn的公式.并给出证明数学选修2-2.快哦...
问题描述:
已知数列1/2,1/6,1/12,..,1/n(n+1),...,计算S1,S2,S3,由此推测计算Sn的公式.并给出证明
数学选修2-2.快哦...
答
1/2=1-1/2
1/6=1/2-1/3
1/12=1/3-1/4
……
1/n(n+1)=1/n-1/(n+1)
所以,Sn=1/2+1/6+1/12+..+1/n(n+1)
=(1-1/2)+(1/2-1/3)+(1/3-1/4)+[1/n-1/(n+1)]
=1-1/(n+1)
=n/(n+1)
答
S1=1/2
S2=1/2+1/6=1/2+(1/2-1/3)=1-1/3
S3=1/2+1/6+1/12=1+1/2-1/3+1/3-1/4=1-1/4
...
Sn=1/2+1/6+1/12+...+1/[n(n+1)]=1-1/(n+1)
记住1/n-1/(n+1)=1/[n(n+1)]很多地方都用到
答
S1=1/2 S2=1/2+1/6=2/3 S3=1/2+1/6+1/12=3/4 ...Sn=1/2+1/6+1/12+...+1/[n(n+1)] =1/(1*2)+1/(2*3)+1/(3*4)+...+1/[n(n+1)]=1-1/2+1/2-1/3+1/3-1/4+...+1/n-1/(n+1) =1-1/(n+1) =n/(n+1)