证明:对大于2的一切正整数n,下列不等式成立(1+2+3+…+n)(1+ 1/2 + 1/3 +…+ 1/n) ≥ n^2+n-1

问题描述:

证明:对大于2的一切正整数n,下列不等式成立(1+2+3+…+n)(1+ 1/2 + 1/3 +…+ 1/n) ≥ n^2+n-1

证明:
设:f(n)=(1+2+3+…+n)(1+ 1/2 + 1/3 +…+ 1/n)-n^2-n+1
f(3)=(1+2+3)(1+ 1/2 + 1/3)-9-3+1=6*11/6-9-3+1=0
f(n+1)-f(n)=(1+2+3+…+n+n+1)[1+ 1/2 + 1/3 +…+ 1/n+1/(n+1)]-(n+1)^2-n
-(1+2+3+…+n)(1+ 1/2 + 1/3 +…+ 1/n)+n^2+n-1
=1+(n+1)(1+ 1/2 + 1/3 +…+ 1/n)+(1+2+3+…+n)(n+1)-2n-2
>1+n+1+(n+1)^2-2n-2>0
f(n)单调递增.
f(n)>f(3)≥0