有一座抛物线形拱桥,正常水位时,桥下水面宽度为20m,拱顶距离水面4m.(1)在如图所示的直角坐标系中,求出该抛物线的表达式;(2)在正常水位的基础上,当水位上升h(m)时,桥下水面的宽度为d(m),求函数解析式

问题描述:

有一座抛物线形拱桥,正常水位时,桥下水面宽度为20m,拱顶距离水面4m.(1)在如图所示的直角坐标系中,求出该抛物线的表达式;(2)在正常水位的基础上,当水位上升h(m)时,桥下水面的宽度为d(m),求函数解析式

1.没有图,我自己设一个..
设该抛物线为y=ax^2+bx+c顶点坐标为(0,0),则C=0,(如果你的图有明确顶点坐标的话,可以直接代入顶点坐标公式求得a和b).
由于抛物线有两点为(-10,4)和(10,4),
则得方程组 100a+10b=4,和100a-10b=4.b=0,a=4/100.
y=0.04x^2 .不知道你的"如图"是不是顶点为(0,0)...
2.在正常水位的基础上,当水位上升h(m)时,桥下水面的宽度为d(m),
即现在,x=+-d,y=4-h,则h=4-y,解释式Y=0.04X^2
(4-y)=(+-d)^2
y=4-d^2