(选修4-1几何证明选讲) 如图,AD∥BC,∠A=90°,以点B为圆心,BC长为半径画弧,交射线AD于点E,连接BE,过点C作CF⊥BE,垂足为F 求证:AB=FC.
问题描述:
(选修4-1几何证明选讲)
如图,AD∥BC,∠A=90°,以点B为圆心,BC长为半径画弧,交射线AD于点E,连接BE,过点C作CF⊥BE,垂足为F
求证:AB=FC.
答
证明:∵以点B为圆心、BC长为半径画弧,交AD边于点E,
∴BC=BE,
∵四边形ABCD为矩形,
∴∠A=90°,AE∥BC,
∴∠AEB=∠FBC,
而CF丄BE,∴∠BFC=90°,
在Rt△ABE和Rt△FCB中,
BE=BC,∠AEB=∠FBC,
∴Rt△ABE≌Rt△FCB,
∴AB=FC.