y=sin(2x-π/6)+2的单调区间,x∈【0,2π/3】的值域和x∈【-π/2,π/6】的值域,对称中心,y=sin(2x-π/6
问题描述:
y=sin(2x-π/6)+2的单调区间,x∈【0,2π/3】的值域和x∈【-π/2,π/6】的值域,对称中心,y=sin(2x-π/6
完整的题目是这样的:y=sin(2x-π/6)+2的单调区间是什么,求x∈【0,2π/3】的值域和x∈【-π/2,π/6】的值域,还有其对称中心?亲们
答
y=sin(2x-π/6)+2最小正周期为 2π/2=π单增:2x-π/6∈[2kπ-π/2,2kπ+π/2]x∈[kπ-π/6,kπ+π/3] k∈z单调增区间为[kπ-π/6,kπ+π/3] k∈z单调增区间加上半个周期 π/2 就是单调减区间为[kπ+π/3,kπ+5π/6]...