在平面直角坐标系中,直线y=-2x+5上有一系列点:P0(1,3),P1(x1,y1),P2(x2,y2),…,Pn(xn,yn),….已知数列{1/xn−1}(n∈N*)是首项为1/2,公差为1的等差数列. (1)求数列{xn}(
问题描述:
在平面直角坐标系中,直线y=-2x+5上有一系列点:P0(1,3),P1(x1,y1),P2(x2,y2),…,Pn(xn,yn),….已知数列{
}(n∈N*)是首项为1
xn−1
,公差为1的等差数列.1 2
(1)求数列{xn}(n∈N*)和数列{yn}(n∈N*)的通项公式;
(2)是否存在一个半径最小的圆C,使得对于一切n∈N,点Pn(xn,yn)均在此圆内部(包括圆周)?若存在,求出此圆的方程;若不存在,请说明理由.
答
(1)∵数列{1xn−1}(n∈N*)是首项为12,公差为1的等差数列,∴1xn−1=12+(n−1)=2n−12∴xn=2n+12n−1∴yn=−2×2n+12n−1+5=6n−72n−1;(2)∵对任意n有xn=1+22n−1∈(1,3]∴显然存在这样的圆,它的一...