设x=1/2(根号5+1),求(x的三次方+x+1)/x的五次方的值
问题描述:
设x=1/2(根号5+1),求(x的三次方+x+1)/x的五次方的值
答
原题即:设x=(√5+1)/2,求(x^3+x+1)/x^5的值.
由于x^2=[(√5+1)/2]^2=(6+2√5)/4=(3+√5)/2;
x^3=x^2×x=(3+√5)/2×(√5+1)/2=(8+4√5)/4=2+√5;
x^5=x^3×x^2=(2+√5)×(3+√5)/2=(11+5√5)/2;
则1/x^5=2/(11+5√5)=2(11-5√5)/(121-125)=(5√5-11)/2.注:分母有理化
所以(x^3+x+1)/x^5
=(x^3+x+1)×1/x^5
=[2+√5+(√5+1)/2+1]×(5√5-11)/2
=(7+3√5)/2×(5√5-11)/2
=(2√5-2)/4
=(√5-1)/2