如图△OAB的顶点为O(0,0),A(2,1),B(10,1),直线CD⊥x轴,并且把△0AB的面积二等分,若点D的坐标为(x,0),求x的值.

问题描述:

如图△OAB的顶点为O(0,0),A(2,1),B(10,1),直线CD⊥x轴,并且把△0AB的面积二等分,若点D的坐标为(x,0),求x的值.

设直线OB的解析式为y=kx(k≠0),
∵B(10,1),
∴1=10k,解得k=

1
10

∴直线OB的解析式为y=
1
10
x,
∵D(x,0),
∴F(x,
x
10
),
∴EF=1-
x
10
,EB=10-x,AB=10-2=8,
∴S△BEF=
1
2
×
10−x
10
×(10-x)=
(10−x)2
20

∴S△AOB=
1
2
×8×1=2×
(10−x)2
20

解得x=10-2
10