设a,b为有理数且a+b=20,a^2+b^2最小值为m,ab最大值n,m+n=?
问题描述:
设a,b为有理数且a+b=20,a^2+b^2最小值为m,ab最大值n,m+n=?
答
a+b=20,a^2+b^2最小值为m,ab最大值n,m+n=
m=(a+b)^2-2ab=400-2n
ab最大值n
a+b=20
a=b=10
n=ab=100
m=400-2n=400-2*100=200
m+n=100+200=300