已知:如图,在△ABC中,AB=AC,D是△ABC外一点,且∠ABD=60°,∠ACD=60° 求证:BD+DC=AB.

问题描述:

已知:如图,在△ABC中,AB=AC,D是△ABC外一点,且∠ABD=60°,∠ACD=60°
求证:BD+DC=AB.

证明:延长BD到F,使BF=BA,连接AF,CF,∵∠ABD=60度,∴△ABF为等边三角形,∴AF=AB=AC=BF,∠AFB=60°,∴∠ACF=∠AFC,又∵∠ACD=60°,∴∠AFB=∠ACD=60°∴∠DFC=∠DCF,∴DC=DF.∴BD+DC=BD+DF=BF=AB,即BD+D...