已知{an}是等差数列,其中a3+a7=18,a6=11. (Ⅰ)求数列{an}通项an; (Ⅱ)若数列{bn}满足bn=an+2n-1(n∈N+),求数列{bn}的前n项和Tn.
问题描述:
已知{an}是等差数列,其中a3+a7=18,a6=11.
(Ⅰ)求数列{an}通项an;
(Ⅱ)若数列{bn}满足bn=an+2n-1(n∈N+),求数列{bn}的前n项和Tn.
答
(Ⅰ)∵a3+a7=2a5=18∴a5=9∴d=a6-a5=11-9=2,a1=1∴an=2n-1(Ⅱ)∵bn=an+2n-1(n∈N+)∴bn=2n-1+2n-1∴Tn=(1+20)+(3+21)+…+[(2n-1)+2n-1]=[1+3+…+(2n-1)]+(20+21+…+2n-1)=n2+2n-1...