设n属于N,n>1,求证logn (n+1)>logn+1 (n+2)
问题描述:
设n属于N,n>1,求证logn (n+1)>logn+1 (n+2)
答
换底公式 loga(b)=logn(b)/logn(a)logn(n+1)=lg(n+1)/lgnlogn+1 (n+2) =lg(n+2)/lg(n+1)logn(n+1)-logn+1(n+2)={lg(n+1)^2-lg(n^2+2n)}/lgnlg(n+1)由于n>1,故lgnlg(n+1)>0,研究lg(n+1)^2-lg(n^2+2n)的符号lg...