在△ABC中,∠ABC与∠ACB的角平分线交于点O,过点O分别作AB,AC的平行线OD,OE交BC于D,E,你发现什么结论
问题描述:
在△ABC中,∠ABC与∠ACB的角平分线交于点O,过点O分别作AB,AC的平行线OD,OE交BC于D,E,你发现什么结论
答
三角形ODE的周长等于BC.
证明:OB平分∠ABC,则∠ABO=∠OBD;
OD平行AB,则∠BOD=∠ABO=∠OBD,得OD=BD;
同理可证:OE=EC.
所以,OD+DE+OE=BD+DE+EC=BC.