x^1/2 - (sinx)^1/2的等价无穷小是多少

问题描述:

x^1/2 - (sinx)^1/2的等价无穷小是多少
额。。。我会用拉格朗日中值定理做了 还有别的方法么?

也可以用泰勒展开泰勒具体怎么展开啊,消不掉的样子啊sinx=x-x^3/3!+o(x^3)x^(1/2)-(sinx)^(1/2)=(x-sinx)/[x^(1/2)+(sinx)^(1/2)]=[x^3/3!-o(x^3)]/[x^(1/2)+(sinx)^(1/2)]=[x^2.5/3!-o(x^2.5)]/[1+(sinx/x)^(1/2)]分母趋向2,分子为x^2.5/3!,所以等价无穷小x^2.5/12