用基本不等式证明:
问题描述:
用基本不等式证明:
已知M(cosa,sina)在直线x/a+y/b=1上,求证:(1/a)^2+(1/b)^2≥1
(怎么用基本不等式求解?貌似要用到不常用的不等式)
答
∵M(cosa,sina)在直线x/a+y/b=1上
∴(cosa)/a+(sina)/b=1
∵(1/a)^2+(1/b)^2
=(sin^2a+cos^2a)/a^2+(sin^2a+cos^2a)/b^2
=(sin^2a)/a^2+(cos^2a)/b^2+(cos^2a)/a^2+(sin^2a)/b^2
≥(2sinacosb)/ab+(cos^2a)/a^2+(sin^2a)/b^2
=[(cosa)/a+(sina)/b]^2=1
∴(1/a)^2+(1/b)^2≥1