已知函数f(x)=x3+mx2+nx-2的图象过点(-1,-6),且函数g(x)=f′(x)+6x的图象关于y轴对称.(Ⅰ)求m、n的值及函数y=f(x)的单调区间;(Ⅱ)若a>0,求函数y=f(x)在区间(a-1,a+1)内的极值.
问题描述:
已知函数f(x)=x3+mx2+nx-2的图象过点(-1,-6),且函数g(x)=f′(x)+6x的图象关于y轴对称.
(Ⅰ)求m、n的值及函数y=f(x)的单调区间;
(Ⅱ)若a>0,求函数y=f(x)在区间(a-1,a+1)内的极值.
答
知识点:本小题主要考查函数的奇偶性、单调性、极值、导数、不等式等基础知识,考查运用导数研究函数性质的方法,以及分类与整合、转化与化归等数学思想方法,考查分析问题和解决问题的能力.
(Ⅰ)由函数f(x)图象过点(-1,-6),得m-n=-3,①由f(x)=x3+mx2+nx-2,得f′(x)=3x2+2mx+n,则g(x)=f′(x)+6x=3x2+(2m+6)x+n;而g(x)图象关于y轴对称,所以-2m+62×3=0,所以m=-3,代入①得n=0.于...
答案解析:(Ⅰ)利用条件的到两个关于m、n的方程,求出m、n的值,再找函数y=f(x)的导函数大于0和小于0对应的区间即可.
(Ⅱ)利用(Ⅰ)的结论,分情况讨论区间(a-1,a+1)和单调区间的位置关系再得结论.
考试点:利用导数研究函数的极值;利用导数研究函数的单调性.
知识点:本小题主要考查函数的奇偶性、单调性、极值、导数、不等式等基础知识,考查运用导数研究函数性质的方法,以及分类与整合、转化与化归等数学思想方法,考查分析问题和解决问题的能力.