答
(1)①对称轴x=-=-2;
②当y=0时,有x2+4x+3=0,
解之,得x1=-1,x2=-3,
∴点A的坐标为(-3,0).
(2)满足条件的点P有3个,分别为(-2,3),(2,3),(-4,-3).
(3)存在.
当x=0时,y=x2+4x+3=3
∴点C的坐标为(0,3),
∵DE∥y轴,AO=3,EO=2,AE=1,CO=3,
∴△AED∽△AOC
∴=即=,
∴DE=1.
∴S梯形DEOC=(1+3)×2=4,
在OE上找点F,使OF=,
此时S△COF=××3=2,直线CF把四边形DEOC分成面积相等的两部分,交抛物线于点M.
设直线CM的解析式为y=kx+3,它经过点F(-,0).
则-k+3=0,(11分)
解之,得k=,
∴直线CM的解析式为y=x+3.
答案解析:(1)根据二次函数y=ax2+bx+c的对称轴为x=-,求得抛物线的对称轴,因为函数与X轴的交点是y=0,列方程即可求得;
(2)分别以AC,AB为对角线各可求得一点,再以AC,AB为边求得一点;
(3)首先可求得梯形DEOC的面积,根据题意:在OE上找点F,使OF=,此时S△COF=××3=2,直线CF把四边形DEOC分成面积相等的两部分,交抛物线于点M,设直线CM的解析式为y=kx+3,它经过点F(-,0),则-k+3=0(11分)解之,得k=∴直线CM的解析式为y=x+3.
考试点:二次函数综合题.
知识点:此题属于中考中的压轴题,难度较大,知识点考查的较多而且联系密切,需要学生认真审题.此题考查了二次函数与一次函数,四边形的综合知识,解题的关键是要注意数形结合思想的应用.